1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT};
use std::time::{Duration, Instant};
use std::cell::{Cell, UnsafeCell};
use std::ptr;
use std::mem;
use std::thread::LocalKey;
#[cfg(not(feature = "nightly"))]
use std::panic;
use smallvec::SmallVec;
use rand::{self, Rng, XorShiftRng};
use thread_parker::ThreadParker;
use word_lock::WordLock;
use util::UncheckedOptionExt;

static NUM_THREADS: AtomicUsize = ATOMIC_USIZE_INIT;
static HASHTABLE: AtomicUsize = ATOMIC_USIZE_INIT;

// Even with 3x more buckets than threads, the memory overhead per thread is
// still only a few hundred bytes per thread.
const LOAD_FACTOR: usize = 3;

struct HashTable {
    // Hash buckets for the table
    entries: Box<[Bucket]>,

    // Number of bits used for the hash function
    hash_bits: u32,

    // Previous table. This is only kept to keep leak detectors happy.
    _prev: *const HashTable,
}

impl HashTable {
    fn new(num_threads: usize, prev: *const HashTable) -> Box<HashTable> {
        let new_size = (num_threads * LOAD_FACTOR).next_power_of_two();
        let hash_bits = 0usize.leading_zeros() - new_size.leading_zeros() - 1;
        let bucket = Bucket {
            mutex: WordLock::new(),
            queue_head: Cell::new(ptr::null()),
            queue_tail: Cell::new(ptr::null()),
            fair_timeout: UnsafeCell::new(FairTimeout::new()),
            _padding: unsafe { mem::uninitialized() },
        };
        Box::new(HashTable {
            entries: vec![bucket; new_size].into_boxed_slice(),
            hash_bits: hash_bits,
            _prev: prev,
        })
    }
}

struct Bucket {
    // Lock protecting the queue
    mutex: WordLock,

    // Linked list of threads waiting on this bucket
    queue_head: Cell<*const ThreadData>,
    queue_tail: Cell<*const ThreadData>,

    // Next time at which point be_fair should be set
    fair_timeout: UnsafeCell<FairTimeout>,

    // Padding to avoid false sharing between buckets. Ideally we would just
    // align the bucket structure to 64 bytes, but Rust doesn't support that
    // yet.
    _padding: [u8; 64],
}

// Implementation of Clone for Bucket, needed to make vec![] work
impl Clone for Bucket {
    fn clone(&self) -> Bucket {
        Bucket {
            mutex: WordLock::new(),
            queue_head: Cell::new(ptr::null()),
            queue_tail: Cell::new(ptr::null()),
            fair_timeout: UnsafeCell::new(FairTimeout::new()),
            _padding: unsafe { mem::uninitialized() },
        }
    }
}

struct FairTimeout {
    // Next time at which point be_fair should be set
    timeout: Instant,

    // Random number generator for calculating the next timeout
    rng: XorShiftRng,
}

impl FairTimeout {
    fn new() -> FairTimeout {
        FairTimeout {
            timeout: Instant::now(),
            rng: rand::weak_rng(),
        }
    }

    // Determine whether we should force a fair unlock, and update the timeout
    fn should_timeout(&mut self) -> bool {
        let now = Instant::now();
        if now > self.timeout {
            self.timeout = now + Duration::new(0, self.rng.gen_range(0, 1000000));
            true
        } else {
            false
        }
    }
}

struct ThreadData {
    parker: ThreadParker,

    // Key that this thread is sleeping on. This may change if the thread is
    // requeued to a different key.
    key: AtomicUsize,

    // Linked list of parked threads in a bucket
    next_in_queue: Cell<*const ThreadData>,

    // UnparkToken passed to this thread when it is unparked
    unpark_token: Cell<UnparkToken>,

    // ParkToken value set by the thread when it was parked
    park_token: Cell<ParkToken>,

    // Is the thread parked with a timeout?
    parked_with_timeout: Cell<bool>,

    // Extra data for deadlock detection
    // TODO: once supported in stable replace with #[cfg...] & remove dummy struct/impl
    #[allow(dead_code)] deadlock_data: deadlock::DeadlockData,
}

impl ThreadData {
    fn new() -> ThreadData {
        // Keep track of the total number of live ThreadData objects and resize
        // the hash table accordingly.
        let num_threads = NUM_THREADS.fetch_add(1, Ordering::Relaxed) + 1;
        unsafe {
            grow_hashtable(num_threads);
        }

        ThreadData {
            parker: ThreadParker::new(),
            key: AtomicUsize::new(0),
            next_in_queue: Cell::new(ptr::null()),
            unpark_token: Cell::new(DEFAULT_UNPARK_TOKEN),
            park_token: Cell::new(DEFAULT_PARK_TOKEN),
            parked_with_timeout: Cell::new(false),
            deadlock_data: deadlock::DeadlockData::new(),
        }
    }
}

// Returns a ThreadData structure for the current thread
unsafe fn get_thread_data(local: &mut Option<ThreadData>) -> &ThreadData {
    // Try to read from thread-local storage, but return None if the TLS has
    // already been destroyed.
    #[cfg(feature = "nightly")]
    fn try_get_tls(key: &'static LocalKey<ThreadData>) -> Option<*const ThreadData> {
        key.try_with(|x| x as *const ThreadData).ok()
    }
    #[cfg(not(feature = "nightly"))]
    fn try_get_tls(key: &'static LocalKey<ThreadData>) -> Option<*const ThreadData> {
        panic::catch_unwind(|| key.with(|x| x as *const ThreadData)).ok()
    }

    // Unlike word_lock::ThreadData, parking_lot::ThreadData is always expensive
    // to construct. Try to use a thread-local version if possible.
    thread_local!(static THREAD_DATA: ThreadData = ThreadData::new());
    if let Some(tls) = try_get_tls(&THREAD_DATA) {
        return &*tls;
    }

    // Otherwise just create a ThreadData on the stack
    *local = Some(ThreadData::new());
    local.as_ref().unwrap()
}

impl Drop for ThreadData {
    fn drop(&mut self) {
        NUM_THREADS.fetch_sub(1, Ordering::Relaxed);
    }
}

// Get a pointer to the latest hash table, creating one if it doesn't exist yet.
unsafe fn get_hashtable() -> *const HashTable {
    let mut table = HASHTABLE.load(Ordering::Acquire);

    // If there is no table, create one
    if table == 0 {
        let new_table = Box::into_raw(HashTable::new(LOAD_FACTOR, ptr::null()));

        // If this fails then it means some other thread created the hash
        // table first.
        match HASHTABLE.compare_exchange(
            0,
            new_table as usize,
            Ordering::Release,
            Ordering::Relaxed,
        ) {
            Ok(_) => return new_table,
            Err(x) => table = x,
        }

        // Free the table we created
        Box::from_raw(new_table);
    }

    table as *const HashTable
}

// Grow the hash table so that it is big enough for the given number of threads.
// This isn't performance-critical since it is only done when a ThreadData is
// created, which only happens once per thread.
unsafe fn grow_hashtable(num_threads: usize) {
    // If there is no table, create one
    if HASHTABLE.load(Ordering::Relaxed) == 0 {
        let new_table = Box::into_raw(HashTable::new(num_threads, ptr::null()));

        // If this fails then it means some other thread created the hash
        // table first.
        if HASHTABLE
            .compare_exchange(0, new_table as usize, Ordering::Release, Ordering::Relaxed)
            .is_ok()
        {
            return;
        }

        // Free the table we created
        Box::from_raw(new_table);
    }

    let mut old_table;
    loop {
        old_table = HASHTABLE.load(Ordering::Acquire) as *mut HashTable;

        // Check if we need to resize the existing table
        if (*old_table).entries.len() >= LOAD_FACTOR * num_threads {
            return;
        }

        // Lock all buckets in the old table
        for b in &(*old_table).entries[..] {
            b.mutex.lock();
        }

        // Now check if our table is still the latest one. Another thread could
        // have grown the hash table between us reading HASHTABLE and locking
        // the buckets.
        if HASHTABLE.load(Ordering::Relaxed) == old_table as usize {
            break;
        }

        // Unlock buckets and try again
        for b in &(*old_table).entries[..] {
            b.mutex.unlock();
        }
    }

    // Create the new table
    let new_table = HashTable::new(num_threads, old_table);

    // Move the entries from the old table to the new one
    for b in &(*old_table).entries[..] {
        let mut current = b.queue_head.get();
        while !current.is_null() {
            let next = (*current).next_in_queue.get();
            let hash = hash((*current).key.load(Ordering::Relaxed), new_table.hash_bits);
            if new_table.entries[hash].queue_tail.get().is_null() {
                new_table.entries[hash].queue_head.set(current);
            } else {
                (*new_table.entries[hash].queue_tail.get())
                    .next_in_queue
                    .set(current);
            }
            new_table.entries[hash].queue_tail.set(current);
            (*current).next_in_queue.set(ptr::null());
            current = next;
        }
    }

    // Publish the new table. No races are possible at this point because
    // any other thread trying to grow the hash table is blocked on the bucket
    // locks in the old table.
    HASHTABLE.store(Box::into_raw(new_table) as usize, Ordering::Release);

    // Unlock all buckets in the old table
    for b in &(*old_table).entries[..] {
        b.mutex.unlock();
    }
}

// Hash function for addresses
#[cfg(target_pointer_width = "32")]
fn hash(key: usize, bits: u32) -> usize {
    key.wrapping_mul(0x9E3779B9) >> (32 - bits)
}
#[cfg(target_pointer_width = "64")]
fn hash(key: usize, bits: u32) -> usize {
    key.wrapping_mul(0x9E3779B97F4A7C15) >> (64 - bits)
}

// Lock the bucket for the given key
unsafe fn lock_bucket<'a>(key: usize) -> &'a Bucket {
    let mut bucket;
    loop {
        let hashtable = get_hashtable();

        let hash = hash(key, (*hashtable).hash_bits);
        bucket = &(*hashtable).entries[hash];

        // Lock the bucket
        bucket.mutex.lock();

        // If no other thread has rehashed the table before we grabbed the lock
        // then we are good to go! The lock we grabbed prevents any rehashes.
        if HASHTABLE.load(Ordering::Relaxed) == hashtable as usize {
            return bucket;
        }

        // Unlock the bucket and try again
        bucket.mutex.unlock();
    }
}

// Lock the bucket for the given key, but check that the key hasn't been changed
// in the meantime due to a requeue.
unsafe fn lock_bucket_checked<'a>(key: &AtomicUsize) -> (usize, &'a Bucket) {
    let mut bucket;
    loop {
        let hashtable = get_hashtable();
        let current_key = key.load(Ordering::Relaxed);

        let hash = hash(current_key, (*hashtable).hash_bits);
        bucket = &(*hashtable).entries[hash];

        // Lock the bucket
        bucket.mutex.lock();

        // Check that both the hash table and key are correct while the bucket
        // is locked. Note that the key can't change once we locked the proper
        // bucket for it, so we just keep trying until we have the correct key.
        if HASHTABLE.load(Ordering::Relaxed) == hashtable as usize
            && key.load(Ordering::Relaxed) == current_key
        {
            return (current_key, bucket);
        }

        // Unlock the bucket and try again
        bucket.mutex.unlock();
    }
}

// Lock the two buckets for the given pair of keys
unsafe fn lock_bucket_pair<'a>(key1: usize, key2: usize) -> (&'a Bucket, &'a Bucket) {
    let mut bucket1;
    loop {
        let hashtable = get_hashtable();

        // Get the lowest bucket first
        let hash1 = hash(key1, (*hashtable).hash_bits);
        let hash2 = hash(key2, (*hashtable).hash_bits);
        if hash1 <= hash2 {
            bucket1 = &(*hashtable).entries[hash1];
        } else {
            bucket1 = &(*hashtable).entries[hash2];
        }

        // Lock the first bucket
        bucket1.mutex.lock();

        // If no other thread has rehashed the table before we grabbed the lock
        // then we are good to go! The lock we grabbed prevents any rehashes.
        if HASHTABLE.load(Ordering::Relaxed) == hashtable as usize {
            // Now lock the second bucket and return the two buckets
            if hash1 == hash2 {
                return (bucket1, bucket1);
            } else if hash1 < hash2 {
                let bucket2 = &(*hashtable).entries[hash2];
                bucket2.mutex.lock();
                return (bucket1, bucket2);
            } else {
                let bucket2 = &(*hashtable).entries[hash1];
                bucket2.mutex.lock();
                return (bucket2, bucket1);
            }
        }

        // Unlock the bucket and try again
        bucket1.mutex.unlock();
    }
}

// Unlock a pair of buckets
unsafe fn unlock_bucket_pair(bucket1: &Bucket, bucket2: &Bucket) {
    if bucket1 as *const _ == bucket2 as *const _ {
        bucket1.mutex.unlock();
    } else if bucket1 as *const _ < bucket2 as *const _ {
        bucket2.mutex.unlock();
        bucket1.mutex.unlock();
    } else {
        bucket1.mutex.unlock();
        bucket2.mutex.unlock();
    }
}

/// Result of a park operation.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum ParkResult {
    /// We were unparked by another thread with the given token.
    Unparked(UnparkToken),

    /// The validation callback returned false.
    Invalid,

    /// The timeout expired.
    TimedOut,
}

impl ParkResult {
    /// Returns true if we were unparked by another thread.
    pub fn is_unparked(self) -> bool {
        if let ParkResult::Unparked(_) = self {
            true
        } else {
            false
        }
    }
}

/// Result of an unpark operation.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct UnparkResult {
    /// The number of threads that were unparked.
    pub unparked_threads: usize,

    /// Whether there are any threads remaining in the queue. This only returns
    /// true if a thread was unparked.
    pub have_more_threads: bool,

    /// This is set to true on average once every 0.5ms for any given key. It
    /// should be used to switch to a fair unlocking mechanism for a particular
    /// unlock.
    pub be_fair: bool,
}

/// Operation that `unpark_requeue` should perform.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum RequeueOp {
    /// Abort the operation without doing anything.
    Abort,

    /// Unpark one thread and requeue the rest onto the target queue.
    UnparkOneRequeueRest,

    /// Requeue all threads onto the target queue.
    RequeueAll,
}

/// Operation that `unpark_filter` should perform for each thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum FilterOp {
    /// Unpark the thread and continue scanning the list of parked threads.
    Unpark,

    /// Don't unpark the thread and continue scanning the list of parked threads.
    Skip,

    /// Don't unpark the thread and stop scanning the list of parked threads.
    Stop,
}

/// A value which is passed from an unparker to a parked thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct UnparkToken(pub usize);

/// A value associated with a parked thread which can be used by `unpark_filter`.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct ParkToken(pub usize);

/// A default unpark token to use.
pub const DEFAULT_UNPARK_TOKEN: UnparkToken = UnparkToken(0);

/// A default park token to use.
pub const DEFAULT_PARK_TOKEN: ParkToken = ParkToken(0);

/// Parks the current thread in the queue associated with the given key.
///
/// The `validate` function is called while the queue is locked and can abort
/// the operation by returning false. If `validate` returns true then the
/// current thread is appended to the queue and the queue is unlocked.
///
/// The `before_sleep` function is called after the queue is unlocked but before
/// the thread is put to sleep. The thread will then sleep until it is unparked
/// or the given timeout is reached.
///
/// The `timed_out` function is also called while the queue is locked, but only
/// if the timeout was reached. It is passed the key of the queue it was in when
/// it timed out, which may be different from the original key if
/// `unpark_requeue` was called. It is also passed a bool which indicates
/// whether it was the last thread in the queue.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `timed_out` functions are called while the queue is
/// locked and must not panic or call into any function in `parking_lot`.
///
/// The `before_sleep` function is called outside the queue lock and is allowed
/// to call `unpark_one`, `unpark_all`, `unpark_requeue` or `unpark_filter`, but
/// it is not allowed to call `park` or panic.
#[inline]
pub unsafe fn park<V, B, T>(
    key: usize,
    validate: V,
    before_sleep: B,
    timed_out: T,
    park_token: ParkToken,
    timeout: Option<Instant>,
) -> ParkResult
where
    V: FnOnce() -> bool,
    B: FnOnce(),
    T: FnOnce(usize, bool),
{
    let mut v = Some(validate);
    let mut b = Some(before_sleep);
    let mut t = Some(timed_out);
    park_internal(
        key,
        &mut || v.take().unchecked_unwrap()(),
        &mut || b.take().unchecked_unwrap()(),
        &mut |key, was_last_thread| t.take().unchecked_unwrap()(key, was_last_thread),
        park_token,
        timeout,
    )
}

// Non-generic version to reduce monomorphization cost
unsafe fn park_internal(
    key: usize,
    validate: &mut FnMut() -> bool,
    before_sleep: &mut FnMut(),
    timed_out: &mut FnMut(usize, bool),
    park_token: ParkToken,
    timeout: Option<Instant>,
) -> ParkResult {
    // Grab our thread data, this also ensures that the hash table exists
    let mut thread_data = None;
    let thread_data = get_thread_data(&mut thread_data);

    // Lock the bucket for the given key
    let bucket = lock_bucket(key);

    // If the validation function fails, just return
    if !validate() {
        bucket.mutex.unlock();
        return ParkResult::Invalid;
    }

    // Append our thread data to the queue and unlock the bucket
    thread_data.parked_with_timeout.set(timeout.is_some());
    thread_data.next_in_queue.set(ptr::null());
    thread_data.key.store(key, Ordering::Relaxed);
    thread_data.park_token.set(park_token);
    thread_data.parker.prepare_park();
    if !bucket.queue_head.get().is_null() {
        (*bucket.queue_tail.get()).next_in_queue.set(thread_data);
    } else {
        bucket.queue_head.set(thread_data);
    }
    bucket.queue_tail.set(thread_data);
    bucket.mutex.unlock();

    // Invoke the pre-sleep callback
    before_sleep();

    // Park our thread and determine whether we were woken up by an unpark or by
    // our timeout. Note that this isn't precise: we can still be unparked since
    // we are still in the queue.
    let unparked = match timeout {
        Some(timeout) => thread_data.parker.park_until(timeout),
        None => {
            thread_data.parker.park();
            // call deadlock detection on_unpark hook
            deadlock::on_unpark(thread_data);
            true
        }
    };

    // If we were unparked, return now
    if unparked {
        return ParkResult::Unparked(thread_data.unpark_token.get());
    }

    // Lock our bucket again. Note that the hashtable may have been rehashed in
    // the meantime. Our key may also have changed if we were requeued.
    let (key, bucket) = lock_bucket_checked(&thread_data.key);

    // Now we need to check again if we were unparked or timed out. Unlike the
    // last check this is precise because we hold the bucket lock.
    if !thread_data.parker.timed_out() {
        bucket.mutex.unlock();
        return ParkResult::Unparked(thread_data.unpark_token.get());
    }

    // We timed out, so we now need to remove our thread from the queue
    let mut link = &bucket.queue_head;
    let mut current = bucket.queue_head.get();
    let mut previous = ptr::null();
    while !current.is_null() {
        if current == thread_data {
            let next = (*current).next_in_queue.get();
            link.set(next);
            let mut was_last_thread = true;
            if bucket.queue_tail.get() == current {
                bucket.queue_tail.set(previous);
            } else {
                // Scan the rest of the queue to see if there are any other
                // entries with the given key.
                let mut scan = next;
                while !scan.is_null() {
                    if (*scan).key.load(Ordering::Relaxed) == key {
                        was_last_thread = false;
                        break;
                    }
                    scan = (*scan).next_in_queue.get();
                }
            }

            // Callback to indicate that we timed out, and whether we were the
            // last thread on the queue.
            timed_out(key, was_last_thread);
            break;
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // There should be no way for our thread to have been removed from the queue
    // if we timed out.
    debug_assert!(!current.is_null());

    // Unlock the bucket, we are done
    bucket.mutex.unlock();
    ParkResult::TimedOut
}

/// Unparks one thread from the queue associated with the given key.
///
/// The `callback` function is called while the queue is locked and before the
/// target thread is woken up. The `UnparkResult` argument to the function
/// indicates whether a thread was found in the queue and whether this was the
/// last thread in the queue. This value is also returned by `unpark_one`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `callback` function is called while the queue is locked and must not
/// panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_one<C>(key: usize, callback: C) -> UnparkResult
where
    C: FnOnce(UnparkResult) -> UnparkToken,
{
    let mut c = Some(callback);
    unpark_one_internal(key, &mut |result| c.take().unchecked_unwrap()(result))
}

// Non-generic version to reduce monomorphization cost
unsafe fn unpark_one_internal(
    key: usize,
    callback: &mut FnMut(UnparkResult) -> UnparkToken,
) -> UnparkResult {
    // Lock the bucket for the given key
    let bucket = lock_bucket(key);

    // Find a thread with a matching key and remove it from the queue
    let mut link = &bucket.queue_head;
    let mut current = bucket.queue_head.get();
    let mut previous = ptr::null();
    let mut result = UnparkResult {
        unparked_threads: 0,
        have_more_threads: false,
        be_fair: false,
    };
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key {
            // Remove the thread from the queue
            let next = (*current).next_in_queue.get();
            link.set(next);
            if bucket.queue_tail.get() == current {
                bucket.queue_tail.set(previous);
            } else {
                // Scan the rest of the queue to see if there are any other
                // entries with the given key.
                let mut scan = next;
                while !scan.is_null() {
                    if (*scan).key.load(Ordering::Relaxed) == key {
                        result.have_more_threads = true;
                        break;
                    }
                    scan = (*scan).next_in_queue.get();
                }
            }

            // Invoke the callback before waking up the thread
            result.unparked_threads = 1;
            result.be_fair = (*bucket.fair_timeout.get()).should_timeout();
            let token = callback(result);

            // Set the token for the target thread
            (*current).unpark_token.set(token);

            // This is a bit tricky: we first lock the ThreadParker to prevent
            // the thread from exiting and freeing its ThreadData if its wait
            // times out. Then we unlock the queue since we don't want to keep
            // the queue locked while we perform a system call. Finally we wake
            // up the parked thread.
            let handle = (*current).parker.unpark_lock();
            bucket.mutex.unlock();
            handle.unpark();

            return result;
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // No threads with a matching key were found in the bucket
    callback(result);
    bucket.mutex.unlock();
    result
}

/// Unparks all threads in the queue associated with the given key.
///
/// The given `UnparkToken` is passed to all unparked threads.
///
/// This function returns the number of threads that were unparked.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
pub unsafe fn unpark_all(key: usize, unpark_token: UnparkToken) -> usize {
    // Lock the bucket for the given key
    let bucket = lock_bucket(key);

    // Remove all threads with the given key in the bucket
    let mut link = &bucket.queue_head;
    let mut current = bucket.queue_head.get();
    let mut previous = ptr::null();
    let mut threads = SmallVec::<[_; 8]>::new();
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key {
            // Remove the thread from the queue
            let next = (*current).next_in_queue.get();
            link.set(next);
            if bucket.queue_tail.get() == current {
                bucket.queue_tail.set(previous);
            }

            // Set the token for the target thread
            (*current).unpark_token.set(unpark_token);

            // Don't wake up threads while holding the queue lock. See comment
            // in unpark_one. For now just record which threads we need to wake
            // up.
            threads.push((*current).parker.unpark_lock());
            current = next;
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // Unlock the bucket
    bucket.mutex.unlock();

    // Now that we are outside the lock, wake up all the threads that we removed
    // from the queue.
    let num_threads = threads.len();
    for handle in threads.into_iter() {
        handle.unpark();
    }

    num_threads
}

/// Removes all threads from the queue associated with `key_from`, optionally
/// unparks the first one and requeues the rest onto the queue associated with
/// `key_to`.
///
/// The `validate` function is called while both queues are locked and can abort
/// the operation by returning `RequeueOp::Abort`. It can also choose to
/// unpark the first thread in the source queue while moving the rest by
/// returning `RequeueOp::UnparkFirstRequeueRest`. Returning
/// `RequeueOp::RequeueAll` will move all threads to the destination queue.
///
/// The `callback` function is also called while both queues are locked. It is
/// passed the `RequeueOp` returned by `validate` and an `UnparkResult`
/// indicating whether a thread was unparked and whether there are threads still
/// parked in the new queue. This `UnparkResult` value is also returned by
/// `unpark_requeue`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `callback` functions are called while the queue is locked
/// and must not panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_requeue<V, C>(
    key_from: usize,
    key_to: usize,
    validate: V,
    callback: C,
) -> UnparkResult
where
    V: FnOnce() -> RequeueOp,
    C: FnOnce(RequeueOp, UnparkResult) -> UnparkToken,
{
    let mut v = Some(validate);
    let mut c = Some(callback);
    unpark_requeue_internal(
        key_from,
        key_to,
        &mut || v.take().unchecked_unwrap()(),
        &mut |op, r| c.take().unchecked_unwrap()(op, r),
    )
}

// Non-generic version to reduce monomorphization cost
unsafe fn unpark_requeue_internal(
    key_from: usize,
    key_to: usize,
    validate: &mut FnMut() -> RequeueOp,
    callback: &mut FnMut(RequeueOp, UnparkResult) -> UnparkToken,
) -> UnparkResult {
    // Lock the two buckets for the given key
    let (bucket_from, bucket_to) = lock_bucket_pair(key_from, key_to);

    // If the validation function fails, just return
    let mut result = UnparkResult {
        unparked_threads: 0,
        have_more_threads: false,
        be_fair: false,
    };
    let op = validate();
    if op == RequeueOp::Abort {
        unlock_bucket_pair(bucket_from, bucket_to);
        return result;
    }

    // Remove all threads with the given key in the source bucket
    let mut link = &bucket_from.queue_head;
    let mut current = bucket_from.queue_head.get();
    let mut previous = ptr::null();
    let mut requeue_threads: *const ThreadData = ptr::null();
    let mut requeue_threads_tail: *const ThreadData = ptr::null();
    let mut wakeup_thread = None;
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key_from {
            // Remove the thread from the queue
            let next = (*current).next_in_queue.get();
            link.set(next);
            if bucket_from.queue_tail.get() == current {
                bucket_from.queue_tail.set(previous);
            }

            // Prepare the first thread for wakeup and requeue the rest.
            if op == RequeueOp::UnparkOneRequeueRest && wakeup_thread.is_none() {
                wakeup_thread = Some(current);
                result.unparked_threads = 1;
            } else {
                if !requeue_threads.is_null() {
                    (*requeue_threads_tail).next_in_queue.set(current);
                } else {
                    requeue_threads = current;
                }
                requeue_threads_tail = current;
                (*current).key.store(key_to, Ordering::Relaxed);
                result.have_more_threads = true;
            }
            current = next;
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // Add the requeued threads to the destination bucket
    if !requeue_threads.is_null() {
        (*requeue_threads_tail).next_in_queue.set(ptr::null());
        if !bucket_to.queue_head.get().is_null() {
            (*bucket_to.queue_tail.get())
                .next_in_queue
                .set(requeue_threads);
        } else {
            bucket_to.queue_head.set(requeue_threads);
        }
        bucket_to.queue_tail.set(requeue_threads_tail);
    }

    // Invoke the callback before waking up the thread
    if result.unparked_threads != 0 {
        result.be_fair = (*bucket_from.fair_timeout.get()).should_timeout();
    }
    let token = callback(op, result);

    // See comment in unpark_one for why we mess with the locking
    if let Some(wakeup_thread) = wakeup_thread {
        (*wakeup_thread).unpark_token.set(token);
        let handle = (*wakeup_thread).parker.unpark_lock();
        unlock_bucket_pair(bucket_from, bucket_to);
        handle.unpark();
    } else {
        unlock_bucket_pair(bucket_from, bucket_to);
    }

    result
}

/// Unparks a number of threads from the front of the queue associated with
/// `key` depending on the results of a filter function which inspects the
/// `ParkToken` associated with each thread.
///
/// The `filter` function is called for each thread in the queue or until
/// `FilterOp::Stop` is returned. This function is passed the `ParkToken`
/// associated with a particular thread, which is unparked if `FilterOp::Unpark`
/// is returned.
///
/// The `callback` function is also called while both queues are locked. It is
/// passed an `UnparkResult` indicating the number of threads that were unparked
/// and whether there are still parked threads in the queue. This `UnparkResult`
/// value is also returned by `unpark_filter`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to all threads that are unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `filter` and `callback` functions are called while the queue is locked
/// and must not panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_filter<F, C>(key: usize, mut filter: F, callback: C) -> UnparkResult
where
    F: FnMut(ParkToken) -> FilterOp,
    C: FnOnce(UnparkResult) -> UnparkToken,
{
    let mut c = Some(callback);
    unpark_filter_internal(key, &mut filter, &mut |r| c.take().unchecked_unwrap()(r))
}

// Non-generic version to reduce monomorphization cost
unsafe fn unpark_filter_internal(
    key: usize,
    filter: &mut FnMut(ParkToken) -> FilterOp,
    callback: &mut FnMut(UnparkResult) -> UnparkToken,
) -> UnparkResult {
    // Lock the bucket for the given key
    let bucket = lock_bucket(key);

    // Go through the queue looking for threads with a matching key
    let mut link = &bucket.queue_head;
    let mut current = bucket.queue_head.get();
    let mut previous = ptr::null();
    let mut threads = SmallVec::<[_; 8]>::new();
    let mut result = UnparkResult {
        unparked_threads: 0,
        have_more_threads: false,
        be_fair: false,
    };
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key {
            // Call the filter function with the thread's ParkToken
            let next = (*current).next_in_queue.get();
            match filter((*current).park_token.get()) {
                FilterOp::Unpark => {
                    // Remove the thread from the queue
                    link.set(next);
                    if bucket.queue_tail.get() == current {
                        bucket.queue_tail.set(previous);
                    }

                    // Add the thread to our list of threads to unpark
                    threads.push((current, None));

                    current = next;
                }
                FilterOp::Skip => {
                    result.have_more_threads = true;
                    link = &(*current).next_in_queue;
                    previous = current;
                    current = link.get();
                }
                FilterOp::Stop => {
                    result.have_more_threads = true;
                    break;
                }
            }
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // Invoke the callback before waking up the threads
    result.unparked_threads = threads.len();
    if result.unparked_threads != 0 {
        result.be_fair = (*bucket.fair_timeout.get()).should_timeout();
    }
    let token = callback(result);

    // Pass the token to all threads that are going to be unparked and prepare
    // them for unparking.
    for t in threads.iter_mut() {
        (*t.0).unpark_token.set(token);
        t.1 = Some((*t.0).parker.unpark_lock());
    }

    bucket.mutex.unlock();

    // Now that we are outside the lock, wake up all the threads that we removed
    // from the queue.
    for (_, handle) in threads.into_iter() {
        handle.unchecked_unwrap().unpark();
    }

    result
}

/// [Experimental] Deadlock detection
///
/// Enabled via the `deadlock_detection` feature flag.
pub mod deadlock {
    #[cfg(feature = "deadlock_detection")]
    use super::deadlock_impl;

    #[cfg(feature = "deadlock_detection")]
    pub(super) use super::deadlock_impl::DeadlockData;

    #[cfg(not(feature = "deadlock_detection"))]
    pub(super) struct DeadlockData {}

    #[cfg(not(feature = "deadlock_detection"))]
    impl DeadlockData {
        pub(super) fn new() -> Self {
            DeadlockData {}
        }
    }

    /// Acquire a resource identified by key in the deadlock detector
    /// Noop if deadlock_detection feature isn't enabled.
    /// Note: Call after the resource is acquired
    #[inline]
    pub unsafe fn acquire_resource(_key: usize) {
        #[cfg(feature = "deadlock_detection")]
        deadlock_impl::acquire_resource(_key);
    }

    /// Release a resource identified by key in the deadlock detector.
    /// Noop if deadlock_detection feature isn't enabled.
    /// Note: Call before the resource is released
    /// # Panics
    /// Panics if the resource was already released or wasn't acquired in this thread.
    #[inline]
    pub unsafe fn release_resource(_key: usize) {
        #[cfg(feature = "deadlock_detection")]
        deadlock_impl::release_resource(_key);
    }

    /// Returns all deadlocks detected *since* the last call.
    /// Each cycle consist of a vector of `DeadlockedThread`.
    #[cfg(feature = "deadlock_detection")]
    #[inline]
    pub fn check_deadlock() -> Vec<Vec<deadlock_impl::DeadlockedThread>> {
        deadlock_impl::check_deadlock()
    }

    #[inline]
    pub(super) unsafe fn on_unpark(_td: &super::ThreadData) {
        #[cfg(feature = "deadlock_detection")]
        deadlock_impl::on_unpark(_td);
    }
}

#[cfg(feature = "deadlock_detection")]
mod deadlock_impl {
    use super::{get_hashtable, get_thread_data, lock_bucket, ThreadData, NUM_THREADS};
    use std::cell::{Cell, UnsafeCell};
    use std::sync::mpsc;
    use std::sync::atomic::Ordering;
    use std::collections::HashSet;
    use thread_id;
    use backtrace::Backtrace;
    use petgraph;
    use petgraph::graphmap::DiGraphMap;

    /// Representation of a deadlocked thread
    pub struct DeadlockedThread {
        thread_id: usize,
        backtrace: Backtrace,
    }

    impl DeadlockedThread {
        /// The system thread id
        pub fn thread_id(&self) -> usize {
            self.thread_id
        }

        /// The thread backtrace
        pub fn backtrace(&self) -> &Backtrace {
            &self.backtrace
        }
    }

    pub struct DeadlockData {
        // Currently owned resources (keys)
        resources: UnsafeCell<Vec<usize>>,

        // Set when there's a pending callstack request
        deadlocked: Cell<bool>,

        // Sender used to report the backtrace
        backtrace_sender: UnsafeCell<Option<mpsc::Sender<DeadlockedThread>>>,

        // System thread id
        thread_id: usize,
    }

    impl DeadlockData {
        pub fn new() -> Self {
            DeadlockData {
                resources: UnsafeCell::new(Vec::new()),
                deadlocked: Cell::new(false),
                backtrace_sender: UnsafeCell::new(None),
                thread_id: thread_id::get(),
            }
        }
    }

    pub(super) unsafe fn on_unpark(td: &ThreadData) {
        if td.deadlock_data.deadlocked.get() {
            let sender = (*td.deadlock_data.backtrace_sender.get()).take().unwrap();
            sender
                .send(DeadlockedThread {
                    thread_id: td.deadlock_data.thread_id,
                    backtrace: Backtrace::new(),
                })
                .unwrap();
            // make sure to close this sender
            drop(sender);

            // park until the end of the time
            td.parker.prepare_park();
            td.parker.park();
            unreachable!("unparked deadlocked thread!");
        }
    }

    pub unsafe fn acquire_resource(key: usize) {
        let mut thread_data = None;
        let thread_data = get_thread_data(&mut thread_data);
        (*thread_data.deadlock_data.resources.get()).push(key);
    }

    pub unsafe fn release_resource(key: usize) {
        let mut thread_data = None;
        let thread_data = get_thread_data(&mut thread_data);
        let resources = &mut (*thread_data.deadlock_data.resources.get());
        match resources.iter().rposition(|x| *x == key) {
            Some(p) => resources.swap_remove(p),
            None => panic!("key {} not found in thread resources", key),
        };
    }

    pub fn check_deadlock() -> Vec<Vec<DeadlockedThread>> {
        unsafe {
            // fast pass
            if check_wait_graph_fast() {
                // double check
                check_wait_graph_slow()
            } else {
                Vec::new()
            }
        }
    }

    // Simple algorithm that builds a wait graph f the threads and the resources,
    // then checks for the presence of cycles (deadlocks).
    // This variant isn't precise as it doesn't lock the entire table before checking
    unsafe fn check_wait_graph_fast() -> bool {
        let table = get_hashtable();
        let thread_count = NUM_THREADS.load(Ordering::Relaxed);
        let mut graph = DiGraphMap::<usize, ()>::with_capacity(thread_count * 2, thread_count * 2);

        for b in &(*table).entries[..] {
            b.mutex.lock();
            let mut current = b.queue_head.get();
            while !current.is_null() {
                if !(*current).parked_with_timeout.get()
                    && !(*current).deadlock_data.deadlocked.get()
                {
                    // .resources are waiting for their owner
                    for &resource in &(*(*current).deadlock_data.resources.get()) {
                        graph.add_edge(resource, current as usize, ());
                    }
                    // owner waits for resource .key
                    graph.add_edge(current as usize, (*current).key.load(Ordering::Relaxed), ());
                }
                current = (*current).next_in_queue.get();
            }
            b.mutex.unlock();
        }

        petgraph::algo::is_cyclic_directed(&graph)
    }

    #[derive(Hash, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
    enum WaitGraphNode {
        Thread(*const ThreadData),
        Resource(usize),
    }

    use self::WaitGraphNode::*;

    // Contrary to the _fast variant this locks the entrie table before looking for cycles.
    // Returns all detected thread wait cycles.
    // Note that once a cycle is reported it's never reported again.
    unsafe fn check_wait_graph_slow() -> Vec<Vec<DeadlockedThread>> {
        let mut table = get_hashtable();
        loop {
            // Lock all buckets in the old table
            for b in &(*table).entries[..] {
                b.mutex.lock();
            }

            // Now check if our table is still the latest one. Another thread could
            // have grown the hash table between us getting and locking the hash table.
            let new_table = get_hashtable();
            if new_table == table {
                break;
            }

            // Unlock buckets and try again
            for b in &(*table).entries[..] {
                b.mutex.unlock();
            }

            table = new_table;
        }

        let thread_count = NUM_THREADS.load(Ordering::Relaxed);
        let mut graph =
            DiGraphMap::<WaitGraphNode, ()>::with_capacity(thread_count * 2, thread_count * 2);

        for b in &(*table).entries[..] {
            let mut current = b.queue_head.get();
            while !current.is_null() {
                if !(*current).parked_with_timeout.get()
                    && !(*current).deadlock_data.deadlocked.get()
                {
                    // .resources are waiting for their owner
                    for &resource in &(*(*current).deadlock_data.resources.get()) {
                        graph.add_edge(Resource(resource), Thread(current), ());
                    }
                    // owner waits for resource .key
                    graph.add_edge(
                        Thread(current),
                        Resource((*current).key.load(Ordering::Relaxed)),
                        (),
                    );
                }
                current = (*current).next_in_queue.get();
            }
        }

        for b in &(*table).entries[..] {
            b.mutex.unlock();
        }

        // find cycles
        let cycles = graph_cycles(&graph);

        let mut results = Vec::with_capacity(cycles.len());

        for cycle in cycles {
            let (sender, receiver) = mpsc::channel();
            for td in cycle {
                let bucket = lock_bucket((*td).key.load(Ordering::Relaxed));
                (*td).deadlock_data.deadlocked.set(true);
                *(*td).deadlock_data.backtrace_sender.get() = Some(sender.clone());
                let handle = (*td).parker.unpark_lock();
                bucket.mutex.unlock();
                // unpark the deadlocked thread!
                // on unpark it'll notice the deadlocked flag and report back
                handle.unpark();
            }
            // make sure to drop our sender before collecting results
            drop(sender);
            results.push(receiver.iter().collect());
        }

        results
    }

    // normalize a cycle to start with the "smallest" node
    fn normalize_cycle<T: Ord + Copy + Clone>(input: &[T]) -> Vec<T> {
        let min_pos = input
            .iter()
            .enumerate()
            .min_by_key(|&(_, &t)| t)
            .map(|(p, _)| p)
            .unwrap_or(0);
        input
            .iter()
            .cycle()
            .skip(min_pos)
            .take(input.len())
            .cloned()
            .collect()
    }

    // returns all thread cycles in the wait graph
    fn graph_cycles(g: &DiGraphMap<WaitGraphNode, ()>) -> Vec<Vec<*const ThreadData>> {
        use petgraph::visit::NodeIndexable;
        use petgraph::visit::depth_first_search;
        use petgraph::visit::DfsEvent;

        let mut cycles = HashSet::new();
        let mut path = Vec::with_capacity(g.node_bound());
        // start from threads to get the correct threads cycle
        let threads = g.nodes()
            .filter(|n| if let &Thread(_) = n { true } else { false });

        depth_first_search(g, threads, |e| match e {
            DfsEvent::Discover(Thread(n), _) => path.push(n),
            DfsEvent::Finish(Thread(_), _) => {
                path.pop();
            }
            DfsEvent::BackEdge(_, Thread(n)) => {
                let from = path.iter().rposition(|&i| i == n).unwrap();
                cycles.insert(normalize_cycle(&path[from..]));
            }
            _ => (),
        });

        cycles.iter().cloned().collect()
    }
}