1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright (c) 2017 Gilad Naaman
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

/// Macro to create a local `base_ptr` raw pointer of the given type, avoiding UB as
/// much as is possible currently.
#[cfg(maybe_uninit)]
#[macro_export]
#[doc(hidden)]
macro_rules! _memoffset__let_base_ptr {
    ($name:ident, $type:path) => {
        // No UB here, and the pointer does not dangle, either.
        // But we have to make sure that `uninit` lives long enough,
        // so it has to be in the same scope as `$name`. That's why
        // `let_base_ptr` declares a variable (several, actually)
        // instead of returning one.
        let uninit = $crate::mem::MaybeUninit::<$type>::uninit();
        let $name = uninit.as_ptr();
    };
}
#[cfg(not(maybe_uninit))]
#[macro_export]
#[doc(hidden)]
macro_rules! _memoffset__let_base_ptr {
    ($name:ident, $type:path) => {
        // No UB right here, but we will later dereference this pointer to
        // offset into a field, and that is UB when the pointer is dangling.
        let $name = $crate::mem::align_of::<$type>() as *const $type;
    };
}

/// Deref-coercion protection macro.
#[macro_export]
#[doc(hidden)]
macro_rules! _memoffset__field_check {
    ($type:path, $field:tt) => {
        // Make sure the field actually exists. This line ensures that a
        // compile-time error is generated if $field is accessed through a
        // Deref impl.
        #[cfg_attr(allow_clippy, allow(clippy::unneeded_field_pattern))]
        let $type { $field: _, .. };
    };
}

/// Computes a const raw pointer to the given field of the given base pointer
/// to the given parent type.
///
/// The `base` pointer *must not* be dangling, but it *may* point to
/// uninitialized memory.
#[macro_export(local_inner_macros)]
macro_rules! raw_field {
    ($base:expr, $parent:path, $field:tt) => {{
        _memoffset__field_check!($parent, $field);
        let base_ptr: *const $parent = $base;

        // Get the field address. This is UB because we are creating a reference to
        // the uninitialized field. Will be updated to use `&raw` before rustc
        // starts exploiting such UB.
        // Crucially, we know that this will not trigger a deref coercion because
        // of the `field_check!` we did above.
        #[allow(unused_unsafe)] // for when the macro is used in an unsafe block
        unsafe {
            &(*base_ptr).$field as *const _
        }
    }};
}

/// Calculates the offset of the specified field from the start of the struct.
///
/// ## Examples
/// ```
/// #[macro_use]
/// extern crate memoffset;
///
/// #[repr(C, packed)]
/// struct Foo {
///     a: u32,
///     b: u64,
///     c: [u8; 5]
/// }
///
/// fn main() {
///     assert_eq!(offset_of!(Foo, a), 0);
///     assert_eq!(offset_of!(Foo, b), 4);
/// }
/// ```
#[cfg(not(feature = "unstable_const"))]
#[macro_export(local_inner_macros)]
macro_rules! offset_of {
    ($parent:path, $field:tt) => {{
        // Get a base pointer.
        _memoffset__let_base_ptr!(base_ptr, $parent);
        // Get field pointer.
        let field_ptr = raw_field!(base_ptr, $parent, $field);
        // Compute offset.
        (field_ptr as usize) - (base_ptr as usize)
    }};
}

#[cfg(feature = "unstable_const")]
#[macro_export(local_inner_macros)]
macro_rules! offset_of {
    ($parent:path, $field:tt) => {{
        // Get a base pointer.
        // No UB here, and the pointer does not dangle, either.
        let uninit = $crate::mem::MaybeUninit::<$parent>::uninit();
        #[allow(unused_unsafe)] // for when the macro is used in an unsafe block
        unsafe {
            // This, on the other hand, *is* UB, since we're creating a reference
            // to uninitialized data.
            // Unfortunately it's the best we can do at the moment.
            let base_ptr = $crate::mem::transmute::<_, &$parent>(&uninit) as *const $parent;
            // Get a field pointer.
            let field_ptr = raw_field!(base_ptr, $parent, $field);
            // Compute offset.
            (field_ptr as *const u8).offset_from(base_ptr as *const u8) as usize
        }
    }};
}

#[cfg(test)]
mod tests {
    #[test]
    fn offset_simple() {
        #[repr(C)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        assert_eq!(offset_of!(Foo, a), 0);
        assert_eq!(offset_of!(Foo, b), 4);
        assert_eq!(offset_of!(Foo, c), 8);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // this creates unaligned references
    fn offset_simple_packed() {
        #[repr(C, packed)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        assert_eq!(offset_of!(Foo, a), 0);
        assert_eq!(offset_of!(Foo, b), 4);
        assert_eq!(offset_of!(Foo, c), 6);
    }

    #[test]
    fn tuple_struct() {
        #[repr(C)]
        struct Tup(i32, i32);

        assert_eq!(offset_of!(Tup, 0), 0);
        assert_eq!(offset_of!(Tup, 1), 4);
    }

    #[test]
    fn path() {
        mod sub {
            #[repr(C)]
            pub struct Foo {
                pub x: u32,
            }
        }

        assert_eq!(offset_of!(sub::Foo, x), 0);
    }

    #[test]
    fn inside_generic_method() {
        struct Pair<T, U>(T, U);

        fn foo<T, U>(_: Pair<T, U>) -> usize {
            offset_of!(Pair<T, U>, 1)
        }

        assert_eq!(foo(Pair(0, 0)), 4);
    }

    #[test]
    fn test_raw_field() {
        #[repr(C)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        let f: Foo = Foo {
            a: 0,
            b: [0, 0],
            c: 0,
        };
        let f_ptr = &f as *const _;
        assert_eq!(f_ptr as usize + 0, raw_field!(f_ptr, Foo, a) as usize);
        assert_eq!(f_ptr as usize + 4, raw_field!(f_ptr, Foo, b) as usize);
        assert_eq!(f_ptr as usize + 8, raw_field!(f_ptr, Foo, c) as usize);
    }

    #[cfg(feature = "unstable_const")]
    #[test]
    fn const_offset() {
        #[repr(C)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        assert_eq!([0; offset_of!(Foo, b)].len(), 4);
    }
}